Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
                                            Some full text articles may not yet be available without a charge during the embargo (administrative interval).
                                        
                                        
                                        
                                            
                                                
                                             What is a DOI Number?
                                        
                                    
                                
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
- 
            Abstract This short article highlights unsolved problems of magnetic reconnection in collisionless plasma. Advanced in-situ plasma measurements and simulations have enabled scientists to gain a novel understanding of magnetic reconnection. Nevertheless, outstanding questions remain concerning the complex dynamics and structures in the diffusion region, cross-scale and regional couplings, the onset of magnetic reconnection, and the details of particle energization. We discuss future directions for magnetic reconnection research, including new observations, new simulations, and interdisciplinary approaches.more » « lessFree, publicly-accessible full text available February 1, 2026
- 
            Abstract We present observations that suggest the X-line of guide-field magnetic reconnection is not necessarily orthogonal to the plane in which magnetic reconnection is occurring. The plane of magnetic reconnection is often referred to as theL–Nplane, whereLis the direction of the reversing and reconnecting magnetic field andNis normal to the current sheet. The X-line is often assumed to be orthogonal to theL–Nplane (defined as theM-direction) in the majority of theoretical studies and numerical simulations. The four-satellite Magnetospheric Multiscale (MMS) mission, however, observes a guide-field magnetic reconnection event in Earth’s magnetotail in which the X-line may be oblique to theL–Nplane. This finding is somewhat opportune as two of the MMS satellites at the sameNlocation report nearly identical observations with no significant time delays in the electron diffusion region (EDR) even though they have substantial separation inL. A minimum directional derivative analysis suggests that the X-line is between 40° and 60° fromM, adding support that the X-line is oblique. Furthermore, the measured ion velocity is inconsistent with the apparent motion of the MMS spacecraft in theL-direction through the EDR, which can be resolved if one assumes a shear in theL–Nplane and motion in theM-direction. A nonorthogonal X-line, if somewhat common, would call for revisiting theory and simulations of guide-field magnetic reconnection, reexamination of how the reconnection electric field is supported in the EDR, and reconsidering the large-scale geometry of the X-line.more » « less
- 
            Abstract Reconnection in the magnetotail occurs along so‐called X‐lines, where magnetic field lines tear and detach from plasma on microscopic spatial scales (comparable to particle gyroradii). In 2017–2020, the Magnetospheric MultiScale (MMS) mission detected X‐lines in the magnetotail enabling their investigation on local scales. However, the global structure and evolution of these X‐lines, critical for understanding their formation and total energy conversion mechanisms, remained virtually unknown because of the intrinsically local nature of observations and the extreme sparsity of concurrent data. Here, we show that mining a multi‐mission archive of space magnetometer data collected over the last 26 yr and then fitting a magnetic field representation modeled using flexible basis‐functions faithfully reconstructs the global pattern of X‐lines; 24 of the 26 modeled X‐lines match (Bz = 0 isocontours are within ∼2 Earth radii orRE) or nearly match (Bz = 2 nT isocontours are within ∼2RE) the locations of the MMS encountered reconnection sites. The obtained global reconnection picture is considered in the context of substorm activity, including conventional substorms and more complex events.more » « less
- 
            Abstract Substorm‐type evolution of the Earth's magnetosphere is investigated by mining more than two decades (1995–2017) of spaceborne magnetometer data from multiple missions including the first two years (2016‐2017) of the Magnetospheric MultiScale mission. This investigation reveals interesting features of plasma evolution distinct from ideal magnetohydrodynamics (MHD) behavior: X‐lines, thin current sheets, and regions with the tailward gradient of the equatorial magnetic fieldBz. X‐lines are found to form mainly beyond 20RE, but for strong driving, with the solar wind electric field exceeding ∼5mV/m, they may come closer. For substorms with weaker driving, X‐lines may be preceded by redistribution of the magnetic flux in the tailwardBzgradient regions, similar to the magnetic flux release instability discovered earlier in PIC and MHD simulations as a precursor mechanism of the reconnection onset. Current sheets in the growth phase may be as thin as 0.2RE, comparable to the thermal ions gyroradius, and at the same time, as long as 15RE. Such an aspect ratio is inconsistent with the isotropic force balance for observed magnetic field configurations. These findings can help resolve kinetic mechanisms of substorm dipolarizations and adjust kinetic generalizations of global MHD models of the magnetosphere. They can also guide and complement microscale analysis of nonideal effects.more » « less
- 
            Magnetic reconnection is an energy conversion process that occurs in many astrophysical contexts including Earth’s magnetosphere, where the process can be investigated in situ by spacecraft. On 11 July 2017, the four Magnetospheric Multiscale spacecraft encountered a reconnection site in Earth’s magnetotail, where reconnection involves symmetric inflow conditions. The electron-scale plasma measurements revealed (i) super-Alfvénic electron jets reaching 15,000 kilometers per second; (ii) electron meandering motion and acceleration by the electric field, producing multiple crescent-shaped structures in the velocity distributions; and (iii) the spatial dimensions of the electron diffusion region with an aspect ratio of 0.1 to 0.2, consistent with fast reconnection. The well-structured multiple layers of electron populations indicate that the dominant electron dynamics are mostly laminar, despite the presence of turbulence near the reconnection site.more » « less
- 
            Abstract Electron inflow and outflow velocities during magnetic reconnection at and near the dayside magnetopause are measured using satellites from NASA's Magnetospheric Multiscale (MMS) mission. A case study is examined in detail, and three other events with similar behavior are shown, with one of them being a recently published electron‐only reconnection event in the magnetosheath. The measured inflow speeds of 200–400 km/s imply dimensionless reconnection rates of 0.05–0.25 when normalized to the relevant electron Alfvén speed, which are within the range of expectations. The outflow speeds are about 1.5–3 times the inflow speeds, which is consistent with theoretical predictions of the aspect ratio of the inner electron diffusion region. A reconnection rate of 0.04 ± 25% was obtained for the case study event using the reconnection electric field as compared to the 0.12 ± 20% rate determined from the inflow velocity.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
